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Abstract

The consistency of second-order closure models with results from hydrodynamic stability

theory is analyzed for the simpli�ed case of homogeneous turbulence. In a recent study,

Speziale, Gatski and MacGiolla Mhuiris [Phys. Fluids A 2, 1678, 1990] showed that second-

order closures are capable of yielding results that are consistent with hydrodynamic stability

theory for the case of homogeneous shear 
ow in a rotating frame. It is demonstrated in

this paper that this success is due to the fact that the stability boundaries for rotating

homogeneous shear 
ow are not dependent on the details of the spatial structure of the

disturbances. For those instances where they are { such as in the case of elliptical 
ows

where the instability mechanism is more subtle { the results are not so favorable. The

origins and extent of this modeling problem are examined in detail along with a possible

resolution based on Rapid Distortion Theory (RDT) and its implications for turbulence

modeling.
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1. INTRODUCTION

While Reynolds stress models are usually thought of as being completely empirical and

without any theoretical foundation, recent work has demonstrated that this is far too pes-

simistic an assessment of the current generation of models1�3. One encouraging result is the

recent discovery that second-order closure models are capable of accurately predicting the

stability boundaries for homogeneous shear 
ow in a rotating frame (see Speziale, Gatski and

MacGiolla Mhuiris4). This is a predictive capability that no eddy viscosity model possesses

{ including models ranging from the Baldwin-Lomax model5 to the standard K � " model6.

Such better predictions are usually thought to arise from the fact that second-order closures

are based on the Reynolds stress transport equation which incorporates more turbulence

physics since it is a rigorous consequence of the Navier-Stokes equations. However, it is

important to understand to what extent these results genuinely have a sound theoretical

basis. This forms the motivation for the present paper.

It will be shown that the reason existing second-order closure models do so well for

homogeneous shear 
ow in a rotating frame is due to the fact that the stability boundaries

do not depend on the details of the spatial structure of the disturbances. For homogeneous

turbulent 
ows where this is not the case { such as the example of elliptical 
ows which

exhibit a more subtle instability mechanism involving resonance that only exists over a

narrow band of wavenumbers { the results are not so favorable. This problem will be

documented in the sections to follow along with a possible resolution. At least some limited

consistency with results from hydrodynamic stability theory is needed if Reynolds stress

models with greater predictive capabilities are to be obtained. Otherwise, it would not even

be possible to predict whether a statistically unsteady turbulence decays or is self-sustaining.

The level of consistency that Reynolds stress models should have with results from linear

stability theory will be discussed in detail and some illustrative calculations will be presented.

2. THEORETICAL BACKGROUND

We will consider incompressible, homogeneous turbulent 
ows with constant mean veloc-

ity gradients, @vi=@xj. The Reynolds stress tensor �ij is a solution of the transport equation
7

_�ij = ��ik @vj
@xk

� �jk
@vi

@xk
+�ij � "ij � 2emkj
m�ik � 2emki
m�jk (1)

for homogeneous turbulence in an arbitrary non-inertial reference frame where 
i is the

angular velocity of the reference frame and eijk is the permutation tensor. In (1), �ij and

"ij are, respectively, the pressure-strain correlation and the dissipation rate tensor given by

�ij = p(
@ui

@xj
+
@uj

@xi
) (2)
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"ij = 2�
@ui

@xk

@uj

@xk
(3)

where ui is the 
uctuating velocity, p is the 
uctuating pressure, � is the kinematic viscosity

and the overbar represents an ensemble mean (�ij � uiuj is the kinematic Reynolds stress

tensor). Second-order closures in turbulence are based on the solution of a modeled version

of (1) which arises from a second moment of the Navier-Stokes equations.

In order to achieve closure, models for �ij and "ij are needed. In virtually all existing

second-order closures, these correlations are modeled in the form

�ij = "Aij(b) +KMijkl(b)
@vk

@xl
(4)

"ij =
2

3
"�ij (5)

where K � 1

2
�ii is the turbulent kinetic energy, " � 1

2
"ii is the (scalar) turbulent dissipation

rate, and bij � (�ij� 2

3
K�ij)=2K is the Reynolds stress anisotropy tensor. Eq. (4) is based on

a simpli�ed analysis of the Poisson equation for the 
uctuating pressure whereas (5) follows

from the Kolmogorov assumption of local isotropy7. For two-dimensional mean turbulent


ows that are homogeneous and near an asymptotic equilibrium state { which includes the

cases to be considered in this paper { (4) simpli�es to the form (see Speziale, Sarkar and

Gatski8)

�ij = �2C1"bij + C2"(bikbkj � 1

3
bklbkl�ij) + C3KSij

+C4K(bikSjk + bjkSik � 2

3
bklSkl�ij) + C5K(bikW jk + bjkW ik) (6)

where

Sij =
1

2
(
@vi

@xj
+
@vj

@xi
); W ij =

1

2
(
@vi

@xj
� @vj

@xi
) + emji
m (7)

are the mean rate of strain and absolute mean vorticity tensors and C1 �C5 are constants.

Virtually all existing second-order closures use a modeled transport equation for the

turbulent dissipation rate that is of the general form

_" = �C"1

"

K
�ij

@vi

@xj
� C"2

"2

K
(8)

for homogeneous turbulence. In (8), C"1 and C"2 are either constants or are functions of

the 
ow invariants which become constants when the turbulence has achieved an asymptotic

state. The Speziale, Sarkar and Gatski (SSG) model8, the Launder, Reece and Rodi model9
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and the IP model10 are all special cases (6) and (8) where C"1 = 1:44 and C"2 is 1:83 for the

former model and 1:92 for the latter two models.

3. MODEL PREDICTIONS

For homogeneous shear 
ow in a rotating frame (see Figure 1(a))

@vi

@xj
=

0
B@

0 S 0

0 0 0

0 0 0

1
CA ; 
i = (0; 0;
) (9)

where S is the shear rate and 
 is the angular velocity of the reference frame which are both

constants. In homogeneous shear 
ows, the Reynolds stress anisotropy tensor bij and the

dimensionless shear parameter SK=" achieve equilibrium values that are largely independent

of the initial conditions (these �xed points are denoted by (bij)1 and (SK=")1 since they

are the asymptotic values obtained in the limit as t!1). From the contraction of (1), and

the results of Speziale and MacGiolla Mhuiris11, it follows that for long times

_K� =
C"2 � C"1

C"1 � 1

�
"

SK

�
1
K� (10)

after (8) is made use of (here, K� = K=Ko and _K� is its time derivative with respect to

the dimensionless time, t� � St). If ("=SK)1 > 0, then we have the long time asymptotic

solution

K� � e�t
�

(11)

where

� � C"2 � C"1

C"1 � 1

�
"

SK

�
1

(12)

is the dimensionless growth rate. This, of course, corresponds to unstable 
ow since there is

an exponential growth of the turbulent kinetic energy given that C"1 > 1 and C"2 > C"1.

If ("=SK)1 = 0, then _K� ! 0 as t ! 1 in such a way that the long time asymptotic

solution is the power law decay K� � t�� where the exponent � depends on the ratio of

the rotation rate to the shear rate, 
=S, as well as on the model constants in (6) and (8)

(see Speziale and MacGiolla Mhuiris11;12). The �xed point ("=SK)1 = 0 exists for all 
=S,

however it is only stable (i.e., a stable focus) outside of the interval

A � 


S
� B (13)

where A and B are determined by the constants in the model. For A < 
=S < B, a stable

�xed point of the focus type, with ("=SK)1 > 0, exists in parallel with the ("=SK)1 = 0
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�xed point that becomes a saddle which is unstable. This exchange of stabilities is illustrated

in the bifurcation diagram provided in Figure 2. Virtually all existing second-order closures

predict that point A is approximately at 
=S = �0:09. Furthermore, second-order closures

with C5 = 0 (such as the early proposal of Rotta13) predict that point B is somewhat

beyond 
=S = 0:5. The SSG model was optimized to perform well for a range of benchmark

two-dimensional mean turbulent 
ows that are near equilibrium; this renders the constant

C5 = 0:40 which places point B at 
=S � 0:53 (see Speziale, Sarkar and Gatski8). However,

it is worth noting that the older Launder, Reece and Rodi9 model predicts a premature

restabilization at 
=S � 0:38.

It is thus clear that state-of-the-art second-order closures predict that homogeneous shear


ow in a rotating frame is unstable for approximately the range

0 � 


S
� 0:5 (14)

wherein there is an exponential growth of the turbulent kinetic energy. Discernibly outside

of the interval (14) the 
ow is stable wherein the turbulent kinetic energy undergoes a

power law decay (the time evolution of the turbulent kinetic energy in each of these distinct

regimes is illustrated in Figure 3 for the SSG model). These results are consistent with linear

hydrodynamic stability theory which predicts unstable 
ow for 0 < 
=S < 0:5 (see Lezius

and Johnston14). Of course, one expects the nonlinear stability boundaries to be somewhat

broader as predicted by the models (it is well known that homogeneous shear 
ow, where


=S = 0, is linearly stable but nonlinearly unstable15). Unfortunately, a detailed comparison

with results for the nonlinear stability of rotating homogeneous shear 
ow is not possible

due to the fact that no such studies have apparently been published. Nonetheless, based on

previous comparisons with large-eddy simulations8, the predictions of second-order closures

appear to be very good, at least from a partial quantitative standpoint.

While the stability boundaries of rotating homogeneous shear 
ow are described surpris-

ingly well by second-order closures, the same is not the case for certain other homogeneous

turbulent 
ows where the instability mechanism is more subtle. An example of such a ho-

mogeneous turbulent 
ow is the case of plane strain with an added solid body rotation in an

inertial frame (see Figure 1(b)). This is characterized by the mean velocity gradient tensor

@vi

@xj
=

0
B@

0 � + ! 0

� � ! 0 0

0 0 0

1
CA (15)

where � is the strain rate and ! is the imposed rotation rate which are both constants (here,


i = 0 since the reference frame is inertial). For ! > �, we have the case of elliptical 
ows
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which have been the subject of recent studies in hydrodynamic stability theory (see Bayly16

and Landman and Sa�man17). We have hyperbolic 
ows for ! < �.

For this 
ow, Eqs. (1) and (8) can be written in terms of bij, K
� and "=�K as follows:

dK�

dt�
= �(4b12 + "

�K
)K� (16)

d

dt�

�
"

�K

�
= 4(1 � C"1)

�
"

�K

�
b12 + (1 �C"2)

�
"

�K

�
2

(17)

db12

dt�
=

1

2
C3 � 2

3
+ [

1

2
(C4 � 2)� !

�
(
1

2
C5 � 1)]b11 + [

1

2
(C4 � 2)

+
!

�
(
1

2
C5 � 1)]b22 + (1� C1 � 1

2
C2b33)(

"

�K
)b12 + 4b2

12
(18)

db11

dt�
= [

1

3
(C4 � 2) + (C5 � 2)(

!

�
)]b12+ [(1� C1)b11

+
1

2
C2(b

2

11
+ b2

12
� 1

3
IIb)](

"

�K
) + 4b12b11 (19)

db22

dt�
= [

1

3
(C4 � 2)� (C5 � 2)(

!

�
)]b12 + [(1� C1)b22

+
1

2
C2(b

2

22
+ b2

12
� 1

3
IIb)](

"

�K
) + 4b12b22 (20)

where IIb � bijbij and t� � �t (here we do not need to write the transport equation for

b33 since b33 = �b11 � b22 from the traceless property of the anisotropy tensor). Following

the same analysis as presented in Speziale and MacGiolla Mhuiris11, the �xed points are

obtained by setting the derivatives on the left-hand-sides of (17)-(20) to zero and then solving

the resulting algebraic equations simultaneously (here, the phase space is four dimensional).

Neglecting the quadratic return term for simplicity, since it is small, yields:

(b12)1 = �1

4
�

�
"

�K

�
1

(21)

and

�
"

�K

�
1
=

1

C1 + �� 1
[
1

3
(C4 � 2)2 � (C5 � 2)2(

!

�
)2 +

4

�
(
2

3
� 1

2
C3)(C1 + � � 1)]

1

2 (22)

for �� < !=� < �. Here, we have
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� =
[1
3
(2� C4)

2 + 4

�
(2
3
� 1

2
C3)(C1 + � � 1)]

1

2

2� C5

(23)

given that � � (C"2 � 1)=(C"1 � 1); ("=�K)1 = 0 outside of the interval �� < !=� < �.

When (21) is substituted into (16) it yields an equation that is identical to (10) except that

("=SK)1 is replaced by ("=�K)1 which is given by (22)(the expression for ("=SK)1 valid

in rotating homogeneous shear 
ow can be found in Speziale and MacGiolla Mhuiris11 for

comparison with (22)).

Analogous to the case of homogeneous shear 
ow in a rotating frame, existing second-

order closures predict unstable 
ow for the intermediate band of rotation rate to strain rate

ratios, �� < !=� < �, where ("=�K)1 > 0 yielding exponential growth (for the SSG model,

� � 1:34). For !=� outside of this interval, ("=�K)1 = 0 yielding a power law decay of the

turbulent kinetic energy. The �xed point ("=�K)1 = 0 exists for all values of !=�, but it

is only stable outside of the interval �� < !=� < �. This is illustrated by the bifurcation

diagram (Figure 4) and the plots of the time evolution of the turbulent kinetic energy (Figure

5) provided for the SSG model. There is the same type of exchange of stabilities (with an

identical phase space portrait) as that obtained for the case of rotating homogeneous shear


ow. While this stability picture is correct for homogeneous shear 
ow in a rotating frame, it

is decidedly in error for plane strain with an added solid body rotation as given by (15). For

j!=�j > 1 we have the class of elliptical 
ows which have been shown to be unstable for all

�nite values of !=� (see Bayly16, Landman and Sa�man17, Pierrehumbert18 and Wale�e19,

the latter of which considers the nonlinear stability). All existing second-order closures

erroneously predict a restabilization starting somewhere before j!=�j = 2. The reason for

these poor predictions in contrast to the remarkably good predictions for homogeneous shear


ow in a rotating frame will be addressed in the next section.

4. LINEAR STABILITY ANALYSIS

A simpli�ed linear stability analysis of the homogeneous 
ows considered in the previous

section will now be presented. Our purpose here is to determine how sensitive the stability

boundaries are to the details of the spatial structure of the disturbances. We consider a

standard decomposition of the velocity �eld vi and pressure p of the form

vi = Ui + u0i; p = P + p0 (24)

where Ui and P represent the velocity and pressure associated with the base 
ow whereas

u0i and p0 represent the disturbance velocity and pressure. The substitution of (24) into the

Navier-Stokes equation, in a non-inertial frame, yields the disturbance equation15
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@u0i
@t

+ Uk

@u0i
@xk

= �u0k
@Ui

@xk
� @p0

@xi
+ � 52 u0i � 2eijk
ju

0
k (25)

after the base 
ow (which also satis�es the Navier-Stokes equation) is subtracted out and

terms that are nonlinear in the disturbances, which are assumed small, are neglected.

Eq. (25) forms the basis for the linear theory of hydrodynamic stability in non-inertial

frames.

The simpli�ed case of spatially uniform disturbances of the form

u
0

i = u
0

i(t); p
0

= p
0

(t) (26)

will be considered. Here, u0i = u0i(t) implies that p0 = p0(t) after we make use of the in-

compressibility constraint and the fact that the pressure disturbances must be bounded for

the linear stability limit to be valid. After substituting (26) into (25), the simple dynamical

system

_u
0

i +Aiku
0

k = 0 (27)

is obtained where

Aik =
@Ui

@xk
+ 2eijk
j (28)

is a constant tensor for the homogeneous 
ows under consideration. For homogeneous shear


ow in a rotating frame, it is clear from (9) that

Aik =

0
B@

0 S � 2
 0
2
 0 0
0 0 0

1
CA : (29)

Since the non-zero eigenvalues of this matrix are given by

�1;2 = �
q
2
(S � 2
)

it follows that the solution of (27) is of the form

u
0

� = u
0

�(0)e
���t (30)

relative to the principal axes x�. Hence, the kinetic energy K of the disturbances has the

asymptotic form

K / e2
p
Rit

�

(31)

where t� � St and

Ri = 2



S
(1� 2




S
) (32)
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is the rotational Richardson number (see Bradshaw20 who de�ned Ri to be the negative of

(32)). Hence, with this de�nition of the Richardson number, the 
ow is unstable if Ri > 0

or, equivalently, if

0 <



S
<

1

2
: (33)

Eq. (33) is identical to the rigorous linear stability result based on a full normal mode

analysis (see Lezius and Johnston14). It is thus clear that here the instability mechanism

does not depend on the details of the spatial structure of the disturbances { a result that

explains the success of second-order closures which smear out information about the spatial

structure of the 
uctuations in homogeneous turbulent 
ows.

For plane strain with an imposed solid body rotation in an inertial frame, the matrix Aik

takes the form

Aik =

0
B@

0 � + ! 0
�� ! 0 0
0 0 0

1
CA (34)

since, for this case, Aik = @Ui=@xk. The non-zero eigenvalues of (34) are as follows:

�1;2 = �
p
�2 � !2: (35)

Thus, implementing the same logic used to arrive at (31), we obtain the asymptotic form

K / e2
p

1�!2=�2t� (36)

where t� � �t. Hence, we have unstable 
ow for j!=�j < 1: a result that is comparable to

the bound of j!=�j < 1:34 obtained from the SSG second-order closure. However, unlike the

corresponding result obtained for rotating homogeneous shear 
ow, this stability result is

decidedly not correct. Recent linear stability studies based on a full normal mode analysis

{ conducted by Bayly16 for the inviscid case and Landman and Sa�man17 for the viscous

case { have indicated that there is unstable 
ow for all �nite values of !=� in the elliptical


ow domain where j!=�j > 1. Furthermore, it should be noted that this 
ow is nonlinearly

unstable for all �nite values of !=� (see Wale�e19). This is a somewhat surprising result

in that strong rotation is often thought of as a stabilizing e�ect. However, for rotation

dominated elliptical 
ows, the instability mechanism is based on a more subtle resonance

e�ect that only exists over a narrow band of wavenumbers16. This feature causes considerable

di�culties in conducting direct numerical simulations of elliptical 
ows (see Blaisdell and

Shari�21).

Interestingly enough, second-order closures predict the same topological structure of the

instability for plane strain in a rotating frame of reference as that manifested in the bifur-

cation diagram shown in Figure 3 for the hyperbolic-elliptical 
ow case. However, unlike for
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the latter case, this instability picture is correct for plane strain in a rotating frame which

bears some similarities to rotating shear 
ow22. For plane strain in a rotating frame,

@Ui

@xj
=

0
B@

0 � 0

� 0 0

0 0 0

1
CA ; 
i = (0; 0;
)

rendering

Aik =

0
B@

0 � � 2
 0

� + 2
 0 0

0 0 0

1
CA : (37)

The non-zero eigenvalues of (37) are given by

�1;2 = �
p
�2 � 4
2

which yields a real positive eigenvalue { and, hence, unstable 
ow { if j
=�j < 1

2
. This is in

line with RDT results which predict a restabilization for values of j
=�j that exceed 0:7 or

even slightly smaller values (F. Godeferd, private communication). The �xed point analysis

for the SSG second-order closure in this case is qualitatively the same as that for plane strain

with an added solid body rotation shown earlier. It yields unstable 
ow for

�0:6 < 


�
< 0:6

which is in line with RDT and with the results of the simpli�ed linear stability analysis

presented above. The time evolution of the RDT solution for the turbulent kinetic energy is

displayed in Figure 6 for 
=� = 0:3 and 
=� = 2 which, respectively, are in the unstable and

stable regime (F. Godeferd, private communication). From a qualitative standpoint, these

results show a remarkable similarity to the results obtained from second-order closures shown

in Figure 5 for the companion problem of plane strain with an added solid body rotation.

Second-order closures do not see the qualitative di�erence between plane strain in a rotating

frame and plane strain with an added solid body rotation.

Finally, we would like to discuss the role that Rapid Distortion Theory (RDT) can play

in the development of Reynolds stress turbulence closures that are more consistent with

hydrodynamic stability theory results for homogeneous 
ows. We �rst note that a general

RDT analysis is equivalent to a linear stability analysis for homogeneous 
ows { a fact that

is not often stated explicitly and, therefore, not widely appreciated outside of the �eld of

theoretical turbulence. For homogeneous turbulence,

@�ij

@xj
= 0 (38)
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and, thus, the evolution equation for the 
uctuating velocity reduces to

@ui

@t
+ vk

@ui

@xk
= uk

@ui

@xk
� uk

@vi

@xk
� @p

@xi
+ � 52 ui � 2eijk
juk (39)

in an arbitrary non-inertial frame. RDT deals with solutions to the linearized version of

(39), where the nonlinear convective term uk@ui=@xk is neglected23. As a result of these

considerations, the Reynolds-averaged Navier-Stokes equation is identical to the Navier-

Stokes equation itself eliminating any distinction between �vk and Uk. Under these conditions,

(39) becomes identical to (25), which renders an RDT analysis equivalent to a linear stability

analysis.

It is thus clear that improved consistency with linear stability theory results would be

achieved if Reynolds stress turbulence closures were more consistent with RDT. In homoge-

neous turbulence, the RDT solution has been demonstrated to constitute an excellent ap-

proximation to the full Navier-Stokes equations, for at least short elapsed times, in rapidly

distorted 
ows where

k @vi

@xj
k >> "o

Ko

(40)

given that k � k denotes any suitable norm. Unfortunately, within this domain where it is

expected to be an excellent approximation, existing second-order closures have been shown

to perform poorly compared to RDT. This has motivated Reynolds24 and Kassinos and

Reynolds25 to attempt to develop Reynolds stress closures that are fully consistent with

RDT by incorporating the structure tensor that includes information on the dimensionality

of the turbulence. While this recent work of Reynolds and co-workers has a worthwhile

goal { and contains many interesting new ideas { questions can be raised about whether

or not it is possible to develop any one-point closure that is consistent with RDT for all


ows. Two-point closures, which contain full spatial information, are probably needed for

this purpose26.

As stated earlier, it has been clearly demonstrated during the past decade that existing

second-order closures perform poorly in the RDT limit. However, it must be noted that

while the development of second-order closures that are consistent with RDT for the early

transients of rapidly distorted turbulent 
ows would help, it is not su�cient to guarantee

consistency with linear hydrodynamic stability theory. It is possible to construct a second-

order closure that in the RDT limit has approximately the correct behavior but for weaker

distortions behaves erroneously. Thus, the �rst author has recently pursued an approach

that seeks to establish consistency with RDT only for a limited set of benchmark results,

without compromising the performance of second-order closures in more weakly distorted

turbulent 
ows where nonlinear e�ects play a major role27.
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5. CONCLUSION

An analysis of the consistency of existing second-order closure models with hydrodynamic

stability theory results has been conducted for two basic homogeneous turbulent 
ows. Most

notably in this regard, it is crucial for consistency to ensure that a turbulence model does not

erroneously predict a decaying turbulent kinetic energy in a 
ow that is linearly unstable. In

contrast to the earlier, and highly encouraging, results obtained for homogeneous shear 
ow

in a rotating frame, it was found that the predictions are poor for the case of elliptical 
ows.

The existing hierarchy of second-order closures predict that elliptical 
ows restabilize when

the rotation rate exceeds the strain rate by any discernible amount whereas recent linear

stability analyses indicate de�nitively that the 
ow is unstable for all �nite rotation rates.

It was found that this di�culty results from the fact that the instability mechanism is more

subtle in elliptical 
ows. It encapsulates a resonance e�ect that exists only over a narrow

band of wavenumbers which yields sensitivity to the spatial structure of the disturbances

{ information that is smeared out in homogeneous turbulence when Reynolds averaging is

implemented. On the other hand, the stability boundaries for homogeneous shear 
ow and

plane strain in a rotating frame are relatively insensitive to the spatial structure of the

disturbances since they can be obtained from a stability analysis based on spatially uniform

disturbances.

It is argued that better consistency with the results of linear stability theory would be

achieved if models were more consistent with RDT. However, full consistency with linear

stability theory would require a model that is consistent with RDT but within a framework

that yields growth rates for any unstable 
ow that are bounded below by the rapid distor-

tion limit (milder distortions where nonlinear interactions play an important role should, in

general, be less stable than the linear limit of RDT). As mentioned earlier, despite the very

interesting work of Reynolds and co-workers24;25, it is debatable as to whether any one-point

closure can be developed that is fully consistent with RDT for all 
ows. Nonetheless, it

does appear to be useful to have at least some limited consistency with RDT in certain

benchmark homogeneous turbulent 
ows (Speziale and Xu27 have attempted a simpler ap-

proach wherein a relaxation time and non-equilibrium Pad�e approximation is made around

the equilibrium solution of the traditional hierarchy of second-order closures). This more

limited approach may be more practical considering the fact that the inconsistencies are not

that widespread. Homogeneous turbulent 
ows involving strains or shear in a rotating frame

{ as well as hyperbolic 
ows { are well described. A detailed comparison of a variety of

second-order closures with DNS data bases for elliptical 
ows, hyperbolic 
ows and plane

strain in a rotating frame will be the subject of a future paper.
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LIST OF FIGURES

Figure 1. Schematic of the 
ows considered. (a) Homogeneous shear 
ow in a rotating frame,

and (b) Plane strain with an added solid body rotation.

Figure 2. Bifurcation diagram for second-order closures corresponding to homogeneous shear


ow in a rotating frame.

Figure 3. Time evolution of the turbulent kinetic energy for homogeneous shear 
ow in a

rotating frame: predictions of the SSG second-order closure model for an initial condition of

SKo="o = 4.

Figure 4. Bifurcation diagram of the SSG second-order closure model corresponding to

plane strain turbulence with an added solid body rotation (elliptical 
ows correspond to

j!=�j > 1).

Figure 5. Time evolution of the turbulent kinetic energy for plane strain turbulence with an

added solid body rotation: predictions of the SSG second-order closure model for an initial

condition of �Ko="o = 2.

Figure 6. Time evolution of the turbulent kinetic energy for plane strain in a rotating frame:

RDT calculations of F. Godeferd.
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